

On the Application of Machine Learning/Deep Learning in Spectrum Sharing

EuCNC 2021 Workshop on Spectrum sharing for the digital ecosystem towards 6G

Gianmarco Baldini, Jaime Ferragut, Pravir Chawdhry, Isabella Cerutti

Joint Research Centre, Ispra

Spectrum Sharing

The spectrum sharing paradigm has been proposed to improve the efficiency in spectrum utilization.

Spectrum sharing is an approach where the radio resources can be re-used by multiple users/technologies/applications to optimize the trade-off between limited spectrum resources and traffic demands.

Artificial Intelligence (AI) and Machine Learning (ML)

- AI strengths:
 - Efficient processing of large amount of data
 - Dynamic processing
 - Automatic detection of data correlation
 - No need for tailored programming
- Machine learning:

3

 A type of AI that can learn dynamically from data without being specifically programmed

AI / ML for Spectrum Sharing

4

Managing the spectrum sharing process in a dynamic and efficient manner while maintaining different regulatory and performance constraints is a challenging task.

For example: the technical difficulty to manage the complexity of a real propagation environment or the complexity of the interaction among different communication systems

AI/ML can play a major role in facilitating the dynamic sharing of the spectrum efficiently by:

- Processing and analysing a large amount of data from RF spectrum environment.
- Manage the complexity of spectrum sharing in an automated way.
- Support or enable the implementation of spectrum sharing functions

High level requirements

- AI/ML learning and convergence should be:
 - Rapid \rightarrow handover issue

- Accurate \rightarrow proper assessment of interference
- Efficient \rightarrow battery lifetime and HW limitations

- Use realistic scenarios for testing and collecting data for training:
 - AI/ML/DL performance depends on data
- Al should be trustworthy (lawful, ethical and robust from technical and social point)

ML/DL can be classified in:

- Supervised: trained with a labelled set of data. Both the inputs and outputs are available (x,y). Optimal scenario for research but not always practical.
- Unsupervised: learning from unlabelled data. Only the inputs are available (x). Most of the cases in the real world.
- Reinforcement learning: agents learn while maximizing a reward function. No direct access to the «correct» output. Useful for dynamic and changing environments.
 6

ML Algorithms for Spectrum sharing (supervised)

- Useful to test an approach or algorithm on a set of labelled data.
- Lack of public high quality labelled data sets in spectrum sharing is a problem.
- Some algorithms: Support Vector Machine, K-Nearest Neighbour, Decision Tree, Random Forest...

ML Algorithms for Spectrum sharing (unsupervised)

- No labelled data available.
- Answer to the question if we can group data based on specific features.
- Main goals are: cluster the data, identify outliers in the data, extract useful information and patterns from big data
- Dimension reduction of the data set
- Algorithms: K-means, hierarchical clustering..

ML Algorithms for Spectrum sharing (reinforcement learning)

- No explicit supervision.
- Learn while processing data.
- Useful for dynamic spectrum sharing environments, which can change in time

ML Algorithms for Spectrum sharing

ML Algorithms for Spectrum sharing

Machine Learning and Deep Learning

Traditional Machine Learning (e.g., SVM)

- Traditional machine learning requires
- manual feature extraction/engineering
- Feature extraction for unstructured data is very difficult

Deep Learning (e.g., CNN)

- Deep Learning can automatically extract features from data
- Deep Learning is largely a black box tecnique updating learning weights while processing data.

Deep Learning for Spectrum sharing

Many Deep Learning algorithms have been proposed in literature for spectrum sharing:

- Convolutional Neural Networks (e.g., for signal classification, spectrum sensing)
- Autoencoders (e.g., for feature extraction, clustering of wireless propagation conditions)
- Deep reinforcement learning for spectrum coexistence and inter-network efficiency.
- Recurrent neural network (RNN) for channel or traffic predictions.

Why Deep Learning is increasingly used ?

Deep Learning has demonstrated its superior performance (e.g., classification accuracy) in many Spectrum sharing problems when a large amount of data is available.

Data quantity

ML vs DL

DL has been increasingly used in spectrum sharing because of its superior performance to conventional ML but there are pro and cons.

Leaning model	Machine learning	Deep learning
Application scenarios	(i) small signal data	(i) high-dimensional signal data
	(ii) signal under relatively ideal conditions	(ii) good feasibility in real field environment
Algorithms	 (i) ANN [26, 37] (ii) KNN [38, 91] (iii) SVM [6, 27, 47, 48, 92] (iv) Naïve Bayes [39] (v) HMM [46] (vi) Fuzzy classifier [93] (vii) Polynomial classifier [40, 94] 	 (i) DNN [24, 30, 31, 61] (ii) DBN [49, 63] (iii) CNN [17, 19–21, 54, 64, 65, 70, 73– 76, 79, 81, 82, 95, 96] (iv) LSTM [29, 69] (v) CRBM [53] (vi) Autoencoder network [50, 62] (vii) Generative adversarial networks [66, 67] (viii) HDMF [71, 72] (ix) NFSC [78]
Pros	(i) works better on small data(ii) low implementation cost	(i) simple pre-processing(ii) high accuracy and efficiency(iii) adaptive to different applications
Cons	(i) time demanding(ii) complex feature engineering(iii) depends heavily on the representation of the data(iv) prone to curse of dimensionality	(i) demanding large amounts of data (ii) high hardware cost

TABLE 1: ML VS DL in wireless signal recognition.

Source: Li, X., Dong, F., Zhang, S., & Guo, W. (2019). A survey on deep learning techniques in wireless signal recognition. Wireless Communications and Mobile Computing, 2019

Deep Learning specific challenges in spectrum sharing:

- Require a large quantity of data which may be difficult to obtain in a real-time telecommunication environment.
- DL algorithms are mostly black boxes which do not give a clear indication on the optimal selected features. They have low interpretability.
- DL algorithms may be vulnerable to adversarial attacks, but this is less common in spectrum sharing at the moment.
- DL algorithms require significant computing resources which may not be available in all spectrum sharing scenarios (e.g., ad-hoc networks or end-user devices)
- DL algorithm have many hyper-parameters to tune.

Conclusions and future developments

- The evolution of machine learning to deep learning supports a paradigm shift from modelling to data analysis as an enabler for many spectrum sharing functions.
- The computing resources needed for DL may be still an obstacle for its application in wireless equipment with limited resources.
- The integration of AI (ML and DL) in 5G and future 6G standardization activities can support a migration from research to industry deployment of ML/DL concepts.
- The availability of high quality data sets for research of AI in spectrum sharing can be helpful to the research community.

Relevant References

• <u>RSPG Report on Spectrum Sharing, A forward-looking survey</u>. RSPG21-016

https://rspg-spectrum.eu/wp-content/uploads/2021/02/RSPG21-016final_RSPG_Report_on_Spectrum_Sharing.pdf.

• European approach to Artificial Intelligence

https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

- Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. *IEEE Communications surveys & tutorials*, *21*(3), 2224-2287.
- Li, X., Dong, F., Zhang, S., & Guo, W. (2019). A survey on deep learning techniques in wireless signal recognition. Wireless Communications and Mobile Computing, 2019

Thank you

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

